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We prove the variation formula, the embedding formula, and the adiabatic limit formula

for equivariant Bismut–Cheeger eta forms with a fiberwise compact Lie group action.

We only need the condition that the kernels of corresponding fiberwise Dirac operators

form vector bundles.

1 Introduction

The Atiyah–Patodi–Singer eta invariant is the boundary contribution of the index

theorem for manifold with boundary with the global boundary condition [2]. Its family

extension, the Bismut–Cheeger eta form, is well defined for a fibration of spin manifolds

when the kernel of the fiberwise Dirac operator forms a vector bundle [8]. Moreover,

the Bismut–Cheeger eta form can be naturally extended to the equivariant case for a

fiberwise compact Lie group action. If the base manifold of the fibration is a point and

the group is trivial, the equivariant eta form degenerates to the eta invariant. So the

equivariant eta form can be considered as the equivariant higher-degree version of the

eta invariant.

The purpose of this paper is to generalize some properties of eta invariants:

the variation formula, the embedding formula, and the adiabatic limit formula, to
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Bismut–Cheeger Eta Form and Higher Spectral Flow 10965

equivariant Bismut–Cheeger eta forms. For the variation formula and the adiabatic limit

formula, we remove additional technical assumptions in previous paper [21].

In [22, 23], the author proved these properties for the equivariant eta form with

perturbation, which is the equivariant version of the modified eta form in [30, 31]. In

this paper, we obtain these formulas for the equivariant version of the original Bismut–

Cheeger eta form by comparing these two versions of equivariant eta forms and the

analysis of the equivariant Dai–Zhang higher spectral flow.

1.1 Properties of reduced eta invariants

Let (X, gTX) be an odd dimensional closed spin manifold. Let E := (E, hE , ∇E) be a triple

that consists of a complex vector bundle E over X, a Hermitian metric hE on E and a

connection ∇E preserving hE . We call E a geometric triple. Let DE
X be the Dirac operator

twisted with these geometric data. The Atiyah–Patodi–Singer eta invariant of the Dirac

operator is defined by

η
(
DE

X

)
:=
∫ ∞

0
Tr
[
DE

X exp
(
−u(DE

X)2
)] du√

πu
, (1.1)

which is a global spectral invariant. The reduced version

η̄
(
DE

X

)
:= 1

2
η
(
DE

X

)
+ 1

2
dim ker DE

X (1.2)

appears as the boundary term in the index theorem of Atiyah–Patodi–Singer [2] for

compact manifold with boundary.

Note that the eta invariant depends on the geometric data (gTX , hE , ∇E). So it is

not a topological invariant. But when the geometric data varies, the variation formula

could be written explicitly.

For i = 0, 1, let gTX
i be Riemannian metrics on TX and ∇TX

i be Levi–Civita

connections with respect to gTX
i . Let Ei = (E, hE

i , ∇E
i ), i = 0, 1, be two geometric triples

over X. Let Di be the Dirac operators associated with the geometric data (gTX
i , ∇E

i ),

respectively.

Theorem 1.1. [3] The difference of two reduced eta invariants

η̄
(
D1

)− η̄
(
D0

) =
∫

X

˜̂A (TX, ∇TX
0 , ∇TX

1

)
ch
(
E, ∇E

0

)
+
∫

X
Â
(
TX, ∇TX

1

)
c̃h
(
E, ∇E

0 , ∇E
1

)
+ sf

(
D0, D1

)
. (1.3)
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10966 B. Liu

Here, Â(·), ch(·) are the Â-form and the Chern character form [4, Section 1.5], ˜̂A(·), c̃h(·)
are corresponding Chern–Simons forms [29, Definition B.5.3] and sf

(
D0, D1

) ∈ Z is the

spectral flow between D0 and D1 [3, p. 94].

Another important property of the eta invariant is the Bismut–Zhang embedding

formula [11], which plays the key role in the differential index theorem [19] and the

equivariant version of which [22] is an important component in the proof of the

localization formula of eta invariants [24].

Theorem 1.2. [11] Let i : Y → X be an embedding between two odd-dimensional closed

spin manifolds. Let gTX be a Riemannian metric on TX and gTY be the induced metric

on TY. Let ∇TY and ∇TX be corresponding Levi–Civita connections. Let μ = (μ, hμ, ∇μ)

be a geometric triple over Y. Then there exist geometric triples ξ± = (ξ±, hξ ,±, ∇ξ ,±) over

X satisfying the metric condition [11,(1.10)] and a spectral flow term sf(Y, X) ∈ Z such

that

η̄(Dξ+
X ) − η̄(Dξ−

X ) = η̄(Dμ
Y) +

∫
X

Â(TX, ∇TX)γ (Y, X)

+
∫

Y

˜̂A(TY, ∇TY,N , ∇TX|Y )Â
−1

(N, ∇N)ch(E, ∇E) + sf(Y, X). (1.4)

Here, ∇N is the connection on the normal bundle N of Y in X induced from the connection

∇TX , ∇TY,N := ∇TY ⊕ ∇N , and γ (Y, X) is the Bismut–Zhang current introduced in [11].

Remark that the vector bundles ξ± over X are the Atiyah–Hirzebruch direct image

[1] of μ over Y and the geometric triples ξ± were constructed in [11, (1.10)]. Bismut

and Zhang [11] established this embedding formula as an equation mod Z. In [18,

Theorem 4.1], when X and Y are boundaries, the hidden mod Z term was explained

as some APS index. In [22], the author explained the mod Z term as a spectral flow

constructively in general case.

Now, we introduce the adiabatic limit formula of eta invariants established by

Bismut and Cheeger [8] and Dai [16]. Let π : W → B be a submersion of two closed

manifolds with fiber X. Let TX := ker(π∗ : TW → TB) be the relative tangent bundle. Let

THW be a horizontal subbundle of TW such that TW = THW ⊕TX. Let gTX be a metric on

TX. Let ∇TX be the connection on TX associated with (THW, gTX) defined in (2.2). Assume

that TX has a spin structure. Let E be a geometric triple over W. Let DE
X be the fiberwise

Dirac operator (see (2.4)). Assume that ker DE
X forms a vector bundle over B. Under this
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Bismut–Cheeger Eta Form and Higher Spectral Flow 10967

assumption, the Bismut–Cheeger eta form η̃BC(π , E) ∈ �∗(B) (non-equivariant version of

Definition 2.1) is well defined. Moreover, by [8, (0.6)] and [16, (0.2)],

dη̃BC(π , E) =

⎧⎪⎪⎨⎪⎪⎩
∫

X
Â(TX, ∇TX)ch(E, ∇E) − ch(ker DE

X , ∇ker), if dim X is even;∫
X

Â(TX, ∇TX)ch(E, ∇E), if dim X is odd.

(1.5)

Here, ∇ker is the connection on the vector bundle ker DE
X defined in (2.6). Let gTB be a

Riemannian metric on TB. Assume that B is spin. Then W is also spin. For t > 0, let

gTW
t := gTX ⊕ t−2π∗gTB, which is a Riemannian metric on TW. Let DE

W,t be the Dirac

operator associated with (gTW
t , ∇E). The following theorem, called the adiabatic limit

formula, was established by Bismut and Cheeger [8] when DE
X is invertible and later

extended to the case that ker DE
X forms a vector bundle [16]. See also [26, (54)] and

[35, Theorem 2.5] for some discussions and applications.

Theorem 1.3. [8, 16] If dim W is odd,

lim
t→0

η̄
(
DE

W,t

)
≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫

B
Â(TB, ∇TB)η̃BC(π , E) + η̄

(
D

ker DE
X

B

)
mod Z, if dim X is even;∫

B
Â(TB, ∇TB)η̃BC(π , E) mod Z, if dim X is odd.

(1.6)

Remark that if B is a point and dim X is odd,

η̃BC(π , E) = 1

2
η(DE

X). (1.7)

Thus, the Bismut–Cheeger eta form can be considered as the higher degree version of

the eta invariant.

1.2 Reduced equivariant Bismut–Cheeger eta form

Let G be a compact Lie group that acts on W and B such that π ◦ g = π for any g ∈ G.

Then the G-action on B is trivial. We assume that the G-action preserves the splitting

TW = THW ⊕ TX and the spin structure of TX. We assume that E is G-equivariant and

gTX , hE , ∇E are G-invariant. Then the G-action commutes with DE
X .

Assume that ker DE
X forms a vector bundle over B. Under this assumption, the

equivariant Bismut–Cheeger eta form η̃BC
g (π , E) ∈ �∗(B) is well defined for any g ∈ G

(Definition 2.1). For the unity e ∈ G, η̃BC
e (π , E) = η̃BC(π , E). Moreover, by [21, (1.3)] (cf. also
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10968 B. Liu

[16, (0.2)]),

dη̃BC
g (π , E) =

⎧⎪⎪⎨⎪⎪⎩
∫

Xg
Âg(TX, ∇TX)chg(E, ∇E) − chg(ker DE

X , ∇ker), if dim X is even;∫
Xg

Âg(TX, ∇TX)chg(E, ∇E), if dim X is odd.

(1.8)

Here, Xg is the fixed point set of g ∈ G on X, Âg(·) and chg(·) are the equivariant Â-form

and the equivariant Chern character form, respectively (see, e.g., [25, Definition 1.3] and

[21, (2.44), (2,45)] for the definitions).

As in (1.2), we define the reduced equivariant eta form ˜̄ηBC
g (π , E) by

˜̄ηBC
g (π , E) =

⎧⎪⎨⎪⎩
η̃BC

g (π , E) + 1

2
chg(ker DE

X , ∇ker) if dim X is odd;

η̃BC
g (π , E), if dim X is even.

(1.9)

When B is a point and dim X is odd, as in (1.7), we have

˜̄ηBC
e (π , E) = η̄(DE

X). (1.10)

So the reduced equivariant Bismut–Cheeger eta form is the equivariant higher-degree

version of the reduced eta invariant.

In this paper, we will generalize Theorems 1.1– 1.3 for reduced eta invariants

to reduced equivariant Bismut–Cheeger eta forms. For the analogue of these results for

holomorphic torsion forms, see [34, Appendix].

For the generalization, the main difficulties are concentrated on the spectral

flow terms. In order to generalize these terms, we need to replace the spectral flow

terms by the equivariant higher spectral flow terms. Unfortunately, until now, the

equivariant higher spectral flow is only well defined when the family index vanishes

as an element of the equivariant K-group of the base space (see [17, Definition 1.5] and

[23, Definitions 3.7, 3.8]). In general, the assumption that the kernel of the fiberwise

Dirac operator forms a vector bundle cannot guarantee that the family index vanishes.

In this paper, we use a trick to overcome this difficulty by adding new vector

bundles to make the equivariant family index vanish. In this case, the equivariant eta

form with perturbation is well defined (Definition 2.2). Then we establish a comparison

formula between it and the reduced equivariant eta form (1.9). And the generalizations

follow from the results for equivariant eta forms with perturbation in [23] and
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Bismut–Cheeger Eta Form and Higher Spectral Flow 10969

the analysis of the higher spectral flow. This trick is inspired by the perturbation

techniques in [19, 26].

Although we use the spin condition here, all results in this paper can be

naturally extended to the equivariant Clifford module case.

In the following subsections, we will describe our results in more details.

1.3 Variation formula

Let π : W → B be an equivariant submersion of two closed G-manifolds with closed fiber

X such that G acts on B trivially and the relative tangent bundle TX has an equivariant

spin structure. Let TH
0 W and TH

1 W be two equivariant horizontal subbundles. Let gTX
0

and gTX
1 be two G-invariant Riemannian metrics on TX. Let ∇TX

0 and ∇TX
1 be connections

in (2.2) associated with (TH
0 W, gTX

0 ) and (TH
1 W, gTX

1 ). Let Ei = (E, hE
i , ∇E

i ), i = 0, 1,

be two equivariant versions of geometric triples over W. Let DE
X,0 and DE

X,1 be two

fiberwise Dirac operators associated with (gTX
0 , ∇E

0 ) and (gTX
1 , ∇E

1 ), respectively. Assume

that ker(DE
X,0) and ker(DE

X,1) form vector bundles over B. Let ˜̄ηBC
g,0(π , E) and ˜̄ηBC

g,1(π , E)

be corresponding reduced equivariant eta forms in (1.9). Let K∗
G(B) be the equivariant

topological K-group of B. Let chg : K∗
G(B) → H∗(B,C) be the equivariant Chern character

map (see (2.14) for the definition of chg on K1
G(B)) for g ∈ G.

Theorem 1.4. There exists x ∈ K∗
G(B), such that modulo exact forms on B, for g ∈ G,

˜̄ηBC
g,1(π , E) − ˜̄ηBC

g,0(π , E) =
∫

Xg

˜̂Ag

(
TX, ∇TX

0 , ∇TX
1

)
chg

(
E, ∇E

0

)
+
∫

Xg
Âg

(
TX, ∇TX

1

)
c̃hg

(
E, ∇E

0 , ∇E
1

)
+ chg(x). (1.11)

Here, ˜̂Ag(·), c̃hg(·) are equivariant Chern–Simons forms associated with equivariant

Â-forms and equivariant Chern character forms, respectively, which are the natural

equivariant versions of [29, Definition B.5.3].

Remark that if B is a point, dim X is odd and G = {e}, Theorem 1.4 degenerates

to Theorem 1.1. If G = {e}, Theorem 1.4 follows directly from the family APS index

theorem [30, 31] for the submersion W × [0, 1] → B with fiber X × [0, 1]. In this case,

the element x ∈ K∗(B) in (11) is a family APS index. For the equivariant case, in [21], the

author established this formula under the assumption that there exists a smooth path

connecting the geometric data (TH
0 W, gTX

0 , hE
0 , ∇E

0 ) and (TH
1 W, gTX

1 , hE
1 , ∇E

1 ) such that there
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10970 B. Liu

is no higher spectral flow along this path. Here, we remove this additional assumption.

In [23, Theorem 1.2], the author established the variation formula for the equivariant

eta forms with perturbation (see Proposition 3.1). For variation formula of eta forms for

other settings, see, for example, [12, 13, 20, 26].

1.4 Embedding formula

Let i : W → V be an equivariant embedding of two closed G-manifolds with even

codimension. Let πV : V → B be an equivariant submersion with closed fiber X, whose

restriction πW : W → B is also an equivariant submersion with closed fiber Y. We

assume that G acts on B trivially. We have the diagram of fibrations:

Let THV be an equivariant horizontal subbundle over V. Assume that

THV|W ⊂ TW. Set THW := THV|W . Then THW is an equivariant horizontal subbundle

over W. Let gTX be an equivariant metric on TX and gTY be the induced metric on

TY. We assume that TY and TX have equivariant spin structures. Let N be the normal

bundle of TY in TX. Let ∇TY and ∇TX be connections in (2.2) associated with (THW, gTY)

and (THV, gTX), respectively. Let ∇N be the connection on N induced from ∇TX . Set

∇TY,N := ∇TY ⊕ ∇N .

Let μ = (μ, hμ, ∇μ) be an equivariant geometric triple over W. As in Theorem 1.2,

by [22, Section 3.3] (see also [11, (1.10)], [24, Section 1.4]), we can construct the

equivariant version of the Atiyah–Hirzebruch direct image: the equivariant geometric

triples ξ± = (ξ±, hξ± , ∇ξ±) over V satisfying the equivariant metric condition [22, (3.13)].

Assume that ker Dξ+
X , ker Dξ−

X , and ker Dμ
Y form vector bundles over B.

Theorem 1.5. There exists x ∈ K∗
G(B) such that modulo exact forms on B, for g ∈ G,

˜̄ηBC
g (πV , ξ+) − ˜̄ηBC

g (πV , ξ−) = ˜̄ηBC
g (πW , μ) +

∫
Xg

Âg(TX, ∇TX)γg(Yg, Xg)

+
∫

Yg

˜̂Ag(TY, ∇TY,N , ∇TX|Wg )Â
−1
g (N, ∇N)chg(E, ∇E) + chg(x). (1.12)

Here, γg(Yg, Xg) is the equivariant Bismut–Zhang current defined in [22].

Remark that for Clifford module case, Theorem 1.5 needs an additional assump-

tion that N has an equivariant spinc structure as in [22].
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Bismut–Cheeger Eta Form and Higher Spectral Flow 10971

When B is a point, dim X is odd and G = {e}, Theorem 1.5 degenerates to

Theorem 1.2. Remark that in [22], the author obtained the equivariant version of

Theorem 1.2 and generalized it to the equivariant eta forms with perturbation.

1.5 Functoriality

Let W, V, B be closed G-manifolds. Let π1 : W → V, π2 : V → B be equivariant

submersions with closed fibers X, Y. Then π3 = π2 ◦ π1 : W → B is an equivariant

submersion with closed fiber Z. Assume that G acts on B trivially. We have the diagram

of fibrations:

Assume that relative tangent bundles TX and TY have equivariant spin struc-

tures. So is the relative tangent bundle TZ � π∗
1 TY ⊕ TX. Let (TH

1 W, gTX), (TH
2 V, gTY) and

(TH
3 W, gTZ) be equivariant geometric data with respect to π1, π2, and π3 as in Section 1.2.

Let ∇TX , ∇TY , and ∇TZ be the corresponding connections on TX, TY, and TZ as in (2.2).

Set ∇TY,TX := π∗
1∇TY ⊕∇TX . Let E = (E, hE , ∇E) be an equivariant geometric triple over W.

Let DE
X and DE

Z be fiberwise Dirac operators associated with (gTX , ∇E) and

(gTZ, ∇E). Assume that ker DE
X (resp. ker DE

Z ) forms a vector bundle over V (resp. B). Let

∇ker be the induced G-invariant connection on the vector bundle ker DE
X as in (2.6). Let

D
ker DE

X
Y be the fiberwise Dirac operator twisted with the vector bundle ker DE

X over V

associated with (gTY , ∇ker) such that ker D
ker DE

X
Y forms a vector bundle over B.

Theorem 1.6. There exists x ∈ K∗
G(B), such that modulo exact forms on B, for g ∈ G, if

dim X is even,

˜̄ηBC
g (π3, E) = ˜̄ηBC

g (π2, ker DE
X) +

∫
Zg

˜̂Ag(TZ, ∇TY,TX , ∇TZ) chg(E, ∇E)

+
∫

Yg
Âg(TY, ∇TY) ˜̄ηBC

g (π1, E) + chg(x); (1.13)

if dim X is odd,

˜̄ηBC
g (π3, E) =

∫
Zg

˜̂Ag(TZ, ∇TY,TX , ∇TZ) chg(E, ∇E)

+
∫

Yg
Âg(TY, ∇TY) ˜̄ηBC

g (π1, E) + chg(x). (1.14)
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10972 B. Liu

Remark that when B is a point, G = {e}, Theorem 1.6 is a general-

ization of Theorem 1.3. In fact, let ∇TZ
t be the Levi–Civita connection associ-

ated with gTX ⊕ t−2π∗
1 gTY . Then, by [21, Proposition 4.5] (cf. also [27, (4.32)]),

limt→0
˜̂Ag(TZ, ∇TY,TX , ∇TZ

t ) = 0. The hidden mod Z term in (1.6) is explained here as

a spectral flow.

In [21], we established this formula under the assumptions that ker D
ker DE

X
Y = 0

and there is no higher spectral flow in all deformations. Here, we remove these

assumptions. Notice that if dim X is odd, (14) seems different from [21, Theorem 1.3].

But they are the same under the assumptions in [21, Theorem 1.3]. The reason is that

if dim X is odd, the term η̃g(TH
2 V, gTY , hLY , hker DX

, ∇LY , ∇ker DX
) in [21, (1.6)] vanishes by

counting degrees on both sides. In [23], we obtain the functoriality for equivariant eta

forms with perturbation. See also [5, 13–15, 20, 27, 28] for other settings.

Note that when the fiberwise Dirac operator D is a fiberwise signature operator,

ker D naturally forms a vector bundle. In this case, the mod Z term in (1.6) was

constructed by spectral sequences in [16]. When the formulas are extended to the

equivariant family case, the spectral sequence terms should be generalized to the

equivariant Chern characters of some vector bundles arising from the study of spectral

sequence as in [13, 28].

Naturally, the functoriality can be extended to the multifibration case in

[8, Appendix 2].

1.6 The organization of the article

This article is organized as follows. In Section 2, we recall the definition of the

equivariant Bismut–Cheeger eta form and compare it with the equivariant eta form

with perturbation. In Sections 3– 5, we prove Theorems 1.4– 1.6 using the comparison

formulas in Section 2.

Notation. All manifolds in this paper are smooth and without boundary. We denote by

d the exterior differential operator and dB when we like to insist the base manifold B.

We use the superconnection formalism of Quillen [32]. If A is a Z2-graded

algebra, and if a, b ∈ A, then we will note [a, b] := ab − (−1)deg(a) deg(b)ba as the

supercommutator of a, b. If E, E′ are two Z2-graded spaces, we will note E⊗̂E′ as the

Z2-graded tensor product as in [4, Section 1.3]. If one of E, E′ is ungraded, we understand

it as Z2-graded by taking its odd part as zero.

For the fiber bundle π : W → B, we use the sign convention for the integration

of the differential forms along the oriented fibers Z as follows: for α ∈ �•(B) and
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Bismut–Cheeger Eta Form and Higher Spectral Flow 10973

β ∈ �•(W),

∫
Z
(π∗α) ∧ β = α ∧

∫
Z
β. (1.15)

2 Bismut–Cheeger Eta Forms

In this section, we recall the definitions of the equivariant Bismut–Cheeger eta form

and the equivariant version of the eta form with perturbation, which was originally

introduced in [30, 31], and study the relations between them.

Let G be a compact Lie group. Let π : W → B be an equivariant submersion of

two compact G-manifolds with compact fiber X such that G acts on B trivially.

Let TX := ker(π∗ : TW → TB) be the relative tangent bundle. Then TW and TX

are equivariant vector bundles over W. Let THW ⊂ TW be an equivariant horizontal

subbundle, such that

TW = THW ⊕ TX. (2.1)

Since G is compact, such THW always exists. Let PTX : TW → TX be the projection

associated with (2.1). Note that THW ∼= π∗TB.

Let gTX , gTB be G-invariant metrics on TX, TB. We equip TW = THW ⊕ TX with

the G-invariant metric gTW = π∗gTB ⊕ gTX . Let ∇TW be the Levi–Civita connection on

(TW, gTW). Let ∇TX be the connection on TX defined by

∇TX = PTX∇TWPTX . (2.2)

It is a G-invariant Euclidean connection on TX that depends only on (THW, gTX) (cf.

[6, Theorem 1.9]). Let ∇TB be the Levi–Civita connection on (TB, gTB). Let ∇TB,TX be the

connection on TW defined by

∇TB,TX = π∗∇TB ⊕ ∇TX , (2.3)

which is also G-invariant.

Let C(TX) be the Clifford algebra bundle of (TX, gTX), whose fiber at w ∈ W

is the Clifford algebra C(TwX) of the Euclidean space (TwX, gTwX). We assume that TX

has a G-equivariant spin structure. Let SX be the spinor bundle over W for (TX, gTX),

which has a smooth action of C(TX) and is G-equivariant. Let ∇SX be the G-invariant
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10974 B. Liu

connection on SX induced by ∇TX . If dim X is even, SX is naturally Z2-graded and ∇SX

preserves this Z2-grading.

Let E be an equivariant complex vector bundle over W. Let hE be a G-invariant

Hermitian metric on E. Let ∇E be a G-invariant Hermitian connection on (E, hE). As

in Section 1.1, we say E = (E, hE , ∇E) is an equivariant geometric triple over W. Set

∇SX⊗E := ∇SX ⊗ 1 + 1 ⊗ ∇E . Then ∇SX⊗E is a G-invariant Hermitian connection on

(SX ⊗ E, hSX ⊗ hE).

Let {ei}dim X
i=1 be a local orthonormal frame of TX. The fiberwise Dirac operator is

defined by

DE
X =

dim X∑
i=1

c(ei)∇SX⊗E
ei

, (2.4)

which is independent of the choice of the local orthonormal frame. If dim X is even, the

fiberwise Dirac operator DE
X = D+ ⊕ D− with respect to the Z2-grading.

For b ∈ B, let Eb be the set of smooth sections over Xb = π−1(b) of SX ⊗ E|Xb
. As

in [6], we will regard E as an infinite dimensional vector bundle over B. If dim X is even,

then E is Z2-graded.

Let ∇E be the connection on E defined in [9, (1.7)], which preserves the L2 inner

product on E . If U ∈ TB, let UH ∈ THW be its horizontal lift in THW so that π∗UH = U. Let

{fp} be a local orthonormal frame of TB. We denote by c(T) = −1
2 c
(
PTX [f H

p , f H
q ]
)

f p ∧f q ∧ .

Let Bu be the rescaled Bismut superconnection defined by (see, e.g., [4, p. 336])

Bu = √
uDE

X + ∇E − c(T)

4
√

u
, u > 0. (2.5)

Note that B
2
u is a 2nd-order elliptic differential operator along the fibers

[6, Theorem 3.5].

We assume that ker DE
X forms a vector bundle over B. Then the L2 inner product

on E induces a G-invariant metric on ker DE
X . Let Pker : E → ker DE

X be the orthogonal

projection with respect to the L2 inner product on E . Let

∇ker := Pker ◦ ∇E ◦ Pker. (2.6)

It is a G-invariant Hermitian connection on ker DE
X .

We define the supertrace Trs on a trace class operator on End(E) as in [4,

Section 1.3]. If P is a trace class operator acting on 	(T∗B)⊗̂End(E) that takes values
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Bismut–Cheeger Eta Form and Higher Spectral Flow 10975

in 	(T∗B), we use the convention that if ω ∈ 	(T∗B),

Tr[ωP] = ωTr[P], Trs[ωP] = ωTrs[P]. (2.7)

We denote by Trodd/even[P] the part of Tr[P] that takes values in odd or even forms. Set

T̃r[P] =
{

Trs[P], if dim X is even;

Trodd[P], if dim X is odd.
(2.8)

For α ∈ �j(B), set

ψB(α) =

⎧⎪⎨⎪⎩
(

1
2π

√−1

) j
2 · α, if j is even;

1√
π

(
1

2π
√−1

) j−1
2 · α, if j is odd.

(2.9)

For β ∈ �∗(B × [0, 1]u), if β = β0 + du ∧ β1, with β0, β1 ∈ 	(T∗B), set

[β]du := β1. (2.10)

The following definition is the equivariant version of the Bismut–Cheeger eta

form in [8].

Definition 2.1. [21, Definition 2.3] For g ∈ G, the equivariant Bismut–Cheeger eta form

is defined by

η̃BC
g (π , E) := −

∫ ∞

0

{
ψ
R×B T̃r

[
g exp

(
−
(
Bu + du ∧ ∂

∂u

)2
)]}du

du

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ ∞

0

1√
π

ψBTreven
[
g

∂Bu

∂u
exp(−B

2
u)

]
du ∈ �even(B,C),

if dim X is odd;∫ ∞

0

1

2
√

π
√−1

ψBTrs

[
g

∂Bu

∂u
exp(−B

2
u)

]
du ∈ �odd(B,C),

if dim X is even.

(2.11)

Note that the convergence of the integrals in (11) are highly nontrivial [21, (2.72),

(2.77)] (cf. also [4, Theorem 10.32]). Remark that by changing the variable (see also
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10976 B. Liu

[21, Remark 2.4]),

η̃BC
g (π , E) = −

∫ ∞

0

{
ψ
R×B T̃r

[
g exp

(
−
(
Bu2 + du ∧ ∂

∂u

)2
)]}du

du. (2.12)

We define the reduced equivariant eta form ˜̄ηBC
g (π , E) as in (1.9). If E = E+ ⊕ E−

is Z2-graded, we define ˜̄ηBC
g (π , E) = ˜̄ηBC

g (π , E+) − ˜̄ηBC
g (π , E−).

Now, we recall the definition of the equivariant eta form with perturbation

in [23].

Let K0
G(B) be the equivariant topological K0-group of B. Fix s ∈ S1. Let ι : B →

B × S1, b �→ (b, s), be the G-equivariant inclusion map, where we suppose that the

G-action on S1 is trivial. From [33, Definitions 2.7 and 2.8],

K1
G(B) � ker

(
ι∗ : K0

G(B × S1) → K0
G(B)

)
. (2.13)

Recall that G acts on B trivially. For x ∈ K0
G(B), g ∈ G, the classical equivariant Chern

character map sends x to chg(x) ∈ Heven(B,C). By (2.13), for x ∈ K1
G(B), we can regard x

as an element x′ in K0
G(B × S1). The odd equivariant Chern character map

chg : K1
G(B) −→ Hodd(B,C) (2.14)

is defined by chg(x) := ∫S1 chg(x′).
If dim X is even (resp. odd), the equivariant (analytic) index Ind(DE

X) ∈
K0

G(B) (resp. K1
G(B)). If Ind(DE

X) = 0 ∈ K∗
G(B), by [23, Proposition 3.3 (i)] (cf. also

[30, Proposition 1] and [31, Proposition 2]), there exists a smooth family of equivariant

bounded pseudodifferential operators A such that (DE
X + A)|Xb

is invertible for any

b ∈ B. If dim X is even, A is additionally required to anti-commute with the Z2-grading

of the spinor SX . (If E = E+ ⊕ E− is Z2-graded, A is required to anti-commute with the

Z2-grading of SX⊗̂E when dim X is even and commute with the Z2-grading of SX⊗̂E

when dim X is odd.) Such operator A is called a perturbation operator.

Let χ ∈ C∞(R) be a cut-off function such that

χ(u) =
⎧⎨⎩0, if u < 1;

1, if u > 2.
(2.15)
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Bismut–Cheeger Eta Form and Higher Spectral Flow 10977

Set

B
′
u = Bu + √

uχ(
√

u)A. (2.16)

The following definition is the equivariant version of the eta form with perturbation in

[17, 30, 31].

Definition 2.2. [23, Definition 3.12] Modulo exact forms on B, the equivariant eta form

with perturbation operator A is defined by

η̃g(π ,A) := −
∫ ∞

0

{
ψ
R×B T̃r

[
g exp

(
−
(
B

′
u + du ∧ ∂

∂u

)2
)]}du

du

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ ∞

0

1√
π

ψBTreven
[
g

∂B′
u

∂u
exp(−(B′

u)2)

]
du, if dim X is odd;∫ ∞

0

1

2
√

π
√−1

ψBTrs

[
g

∂B′
u

∂u
exp(−(B′

u)2)

]
du, if dim X is even.

(2.17)

Moreover, as in (1.8) (see, e.g., [23, (3.66)]),

dη̃g(π ,A) =
∫

Xg
Âg(TX, ∇TX)chg(E, ∇E). (2.18)

As in (2.12), we have

η̃g(π ,A) = −
∫ ∞

0

{
ψ
R×B T̃r

[
g exp

(
−
(
B

′
u2 + du ∧ ∂

∂u

)2
)]}du

du. (2.19)

The proof of the well-definedness of η̃g(π ,A) is the same as that of η̃BC
g (π , E).

Remark that if we choose another cut-off function, the difference of the new eta form

and the original one is an exact form. So modulo exact forms, the definition of η̃g(π ,A)

is independent of the choice of the cut-off function in (2.15).

Now, we discuss the relations between these two types of equivariant eta forms

when ker DE
X forms a vector bundle over B.

Case 1: dim X is odd.

Since ker DE
X forms a vector bundle, ker(DE

X + Pker) = 0. So from

[23, Proposition 3.3] (cf. also [30, Proposition 1]), we have Ind(DE
X) = 0 ∈ K1

G(B) and

Pker is a perturbation operator.
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10978 B. Liu

Proposition 2.3. If dim X is odd, we have

η̃g(π , Pker) = ˜̄ηBC
g (π , E) mod d�∗(B). (2.20)

Proof. Let B̃u be the Bismut superconnection with respect to the fiber bundle

W × [0, 1]s → B × [0, 1]s with fiber X such that restricted on W × {s}, s ∈ [0, 1],

B̃u|W×{s} = Bu + ds ∧ ∂
∂s . Set

B̃
′
u2 := B̃u2 + usχ(u)Pker = u(DE

X + sχ(u)Pker) + ∇E + ds ∧ ∂

∂s
− c(T)

4u
. (2.21)

We decompose

ψ
R2×BTrodd

[
g exp

(
−
(
B̃

′
u2 + du ∧ ∂

∂u

)2
)]

= du ∧ γ (u, s) + ds ∧ r1(u, s) + du ∧ ds ∧ r2(u, s) + r3(u, s), (2.22)

where γ , r1, r2, r3 do not contain du neither ds. From (2.12), (2.19), and (22), we have

η̃BC
g (π , E) = −

∫ ∞

0
γ (u, 0) du, η̃g(π , Pker) = −

∫ ∞

0
γ (u, 1) du. (2.23)

By [4, Theorem 9.17],

(
du ∧ ∂

∂u
+ ds ∧ ∂

∂s
+ dB

)
Tr

[
g exp

(
−
(
B̃

′
u2 + du ∧ ∂

∂u

)2
)]

= 0. (2.24)

So from (2.22) and (2.24),

∂γ (u, s)

∂s
= ∂r1(u, s)

∂u
+ dBr2(u, s). (2.25)

From (2.23) and (2.25),

η̃g(π , Pker) − η̃BC
g (π , E) = −

∫ +∞

0
(γ (u, 1) − γ (u, 0)) du

= −
∫ +∞

0

∫ 1

0

∂

∂s
γ (u, s) dsdu = −

∫ 1

0

∫ +∞

0

∂

∂s
γ (u, s) duds

= −
∫ 1

0

∫ +∞

0

∂

∂u
r1(u, s) duds − dB

∫ 1

0

∫ +∞

0
r2(u, s) duds

=
∫ 1

0

(
r1(0, s) − r1(∞, s)

)
ds − dB

∫ 1

0

∫ +∞

0
r2(u, s) duds. (2.26)
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Bismut–Cheeger Eta Form and Higher Spectral Flow 10979

The commutative property of the integrals in the above formula is guaranteed by [21,

(2.72), (2.77)] for s ∈ [0, 1]. By (2.15), (2.22), and the equivariant family local index theorem

(see, e.g., [25, Theorem 1], [21, Theorem 2.2]), as in [21, (2.96), (2.97)], we have

r1(0, s) = 0, r1(∞, s) = 1√
π

lim
u→+∞ ψB

{
Trodd

[
g exp

(
− (B̃′

u2

)2)]}ds
. (2.27)

Therefore, by (2.26) and (2.27), modulo exact forms on B, we have

η̃g(π , Pker) − η̃BC
g (π , E) = − 1√

π
lim

u→+∞ ψB

∫ 1

0

{
Trodd

[
g exp

(
− (B̃′

u2

)2)]}ds
ds. (2.28)

For a family of bounded operators Au, u ∈ R+, we write Au = O(u−k) as u → +∞
if there exists C > 0 such that if u is large enough, the norm of Au is dominated by Cu−k.

Let Pker,⊥ be the orthogonal projection on the orthogonal complement of ker DE
X .

Set

Eu = Pker ◦ (B̃′
u2

)2 ◦ Pker, Fu = Pker ◦ (B̃′
u2

)2 ◦ Pker,⊥,

Gu = Pker,⊥ ◦ (B̃′
u2

)2 ◦ Pker, Hu = Pker,⊥ ◦ (B̃′
u2

)2 ◦ Pker,⊥.
(2.29)

Note that

Pker{u(DE
X + sχ(u)Pker)}Pker = usχ(u)Pker. (2.30)

Denote by ∇̃ = ∇E + ds ∧ ∂
∂s . Let

E′ = u2s2Pker + uds ∧ Pker + Pker(∇E )2Pker,

F ′ = Pker,⊥[DE
X + sPker, ∇̃]Pker,

G′ = Pker[DE
X + sPker, ∇̃]Pker,⊥,

H ′ = Pker,⊥(DE
X + sPker)2Pker,⊥ = Pker,⊥(DE

X)2Pker,⊥.

(2.31)

By (2.21), when u → +∞,

Eu = E′ + O(u−1), Fu = uF ′ + F ′′ + O(1),

Gu = uG′ + G′′ + O(1), Hu = u2H ′ + uH ′′ + H ′′′ + O(1),
(2.32)
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10980 B. Liu

where F ′′, G′′, H ′′, H ′′′ are 1st-order differential operators along the fiber. Moreover, by

(2.6) and (2.31), we have

E′ − G′H ′−1F ′ = u2s2Pker + uds ∧ +(∇ker)2 + s2C + sD, (2.33)

where

C = Pker∇̃Pker,⊥(Pker,⊥DE
XPker,⊥)−2Pker,⊥∇̃Pker,

D = 2Pker∇̃Pker,⊥(Pker,⊥DE
XPker,⊥)−1Pker,⊥∇̃Pker.

(2.34)

Following the same way as the proof of [21, Theorem 5.13] (cf. also [4, Theorem 9.19]),

when u → +∞, we can obtain

exp
(
− (B̃′

u2

)2) = Pker ◦ exp
(− (E′ − G′H ′−1F ′)

) ◦ Pker + O(u−1). (2.35)

So from (2.28), as in [21, Theorem 5.15], modulo exact forms,

η̃g(π , Pker) − η̃BC
g (π , E) = 1√

π
lim

u→+∞

∫ 1

0
ue−u2s2

ψBTreven[g exp(−(∇ker)2 − s2C − sD)] ds

= 1√
π

lim
u→+∞

∫ u

0
e−t2

ψBTreven[g exp(−(∇ker)2 − u−2t2C − u−1tD)] dt. (2.36)

Using the Volterra series (cf., e.g., [4, (2.5)]), we have

η̃g(π , Pker) − η̃BC
g (π , E) = 1√

π

∫ +∞

0
e−t2

dt · chg(ker DE
X , ∇ker) = 1

2
chg(ker DE

X , ∇ker). (2.37)

By (1.9) and (2.37), the proof of Proposition 2.3 is completed. �

Remark that we can also obtain this proposition using the method in [4, Chapter

9] as in [30, Proposition 17].

Remark 2.4. (a) Observe that from (1.8) and (2.18),

dBη̃g(π , Pker) = dB ˜̄ηBC
g (π , E) =

∫
Xg

Âg(TX, ∇TX)chg(E, ∇E), (2.38)

which is compatible with this proposition.

(b) If B is a point, from [23, Remark 3.20], both sides of (2.20) are equal to the

reduced eta invariant.
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Bismut–Cheeger Eta Form and Higher Spectral Flow 10981

Case 2: dim X is even.

In this case, ker DE
X = ker D+ ⊕ ker D− is a Z2-graded vector bundle. But Pker is

not a perturbation operator because Pker does not anti-commute with the Z2-grading of

the spinor. In general, Ind(DE
X) �= 0 ∈ K0

G(B).

We consider a new equivariant fiber bundle π ′ : W � B → B with fiber X �
{pt}, which is the disjoint union of the fiber bundle W → B and a new fiber bundle

B × {pt} → B whose fiber is a point. We denote by (ker D+)− and (ker D−)+ the vector

bundles ker D+ and ker D− over B × {pt} with the inverse grading. Let DH be the Dirac

operator on H = E ⊕ (ker D+)− ⊕ (ker D−)+ with respect to the fiber bundle π ′. Then

DH = DE
X ⊕ 0 ⊕ 0. Note that

Ind(DH) = IndDE
X − IndDE

X = 0 ∈ K0
G(B). (2.39)

Let η̃BC
g (π ′, E�(ker DE

X)op) be the equivariant Bismut–Cheeger eta form associated

with this fiber bundle π ′. Here, (ker DE
X)op denotes the Z2-graded vector bundle ker DE

X

with the opposite grading. Notice that if the fiber is a point, the corresponding Bismut–

Cheeger eta form vanishes. Thus, we have

η̃BC
g (π ′, E � (ker DE

X)op) = η̃BC
g (π , E). (2.40)

Let V = ker D+⊕ker D−⊕(ker D+)−⊕(ker D−)+. Let PV : H → V be the orthogonal

projection on V. Let

A =
(

0 1

1 0

)
◦ PV (2.41)

on
(

ker D+⊕(ker D−)+
)⊕((ker D+)−⊕ker D−

)
. Then A anticommutes with the Z2-grading

and A2 = Id on V. Since

(DH + A)2 = DH,2 + A2 = DH,2 + PV , (2.42)

we see that DH + A is invertible. So A is a perturation operator associated with DH . Let

η̃H
g (π ′,A) be the corresponding eta form with perturbation operator A.

Proposition 2.5. If dim X is even, we have

η̃H
g (π ′,A) = ˜̄ηBC

g (π , E) mod d�∗(B). (2.43)
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10982 B. Liu

Proof. From (1.9) and (2.40), we only need to prove η̃H
g (π ′,A) = η̃BC

g (π ′, E � (ker DE
X)op)

mod d�∗(B).

Let ∇H = ∇E ⊕ ∇ker on H. As in (2.21), we set

B̃
′H
u2 = u(DH + sχ(u)A) + ∇H + ds ∧ ∂

∂s
− c(T)

4u
(2.44)

with respect to the vector bundle (W � B) × [0, 1] → B × [0, 1] with fiber X � {pt}.
Then following the same process as in (2.22)– (2.28), modulo exact forms on B,

we have

η̃g(π ′,A) − η̃BC
g (π ′, E � (ker DE

X)op)

= − 1

2
√

π
√−1

lim
u→+∞ ψB

∫ 1

0

{
Trs

[
g exp

(
−
(
B̃

′H
u2

)2
)]}ds

ds. (2.45)

Let Rker = (∇ker)2 be the curvature of the connection ∇ker on ker DE
X . As in (2.29)– (2.37),

modulo exact forms on B,

η̃g(π ′,A) − η̃BC
g (π ′, E � (ker DE

X)op)

= 1

2
√

π
√−1

ψB

∫ +∞

0
e−t2

dt · TrV
s [gA exp(−Rker ⊕ Rker)]. (2.46)

Note that

A exp(−Rker ⊕ Rker) =
(

0 1

1 0

)(
exp(−Rker) 0

0 exp(−Rker)

)

=
(

0 exp(−Rker)

exp(−Rker) 0

)
. (2.47)

Since the group action commutes with A and Rker, TrV
s [gA exp(−Rker ⊕ Rker)] = 0. So

Proposition 2.5 follows from (2.40), (2.46), and (2.47).

The proof of Proposition 2.5 is completed. �

Remark 2.6. As in (2.38), from (1.8) and (2.18), we have

dBη̃H
g (π ′,A) = dB ˜̄ηBC

g (π ′, E) =
∫

Xg
Âg(TX, ∇TX)chg(E, ∇E) − chg(ker DE

X , ∇ker), (2.48)

which is compatible with Proposition 2.5.
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Bismut–Cheeger Eta Form and Higher Spectral Flow 10983

3 Anomaly Formula

In this section, we will prove Theorem 1.4. We use the notations and the assumptions in

Section 1.3.

Let s ∈ I, I = [0, 1], parametrize a smooth path of equivariant horizontal

subbundles {TH
s W}s∈[0,1]. The existence of such path follows from the affineness of

the space of equivariant splitting maps in the short exact sequence 0 → TX →
TW → π∗TB → 0. Let gTX

s and hE
s be G-invariant metrics on TX and E connecting

(gTX
0 , hE

0 ) and (gTX
1 , hE

1 ) smoothly. Let ∇E
s be a G-invariant Hermitian connection on (E, hE

s )

connecting ∇E
0 and ∇E

1 smoothly. Now, we get a smooth path connecting the geometric

data (TH
0 W, gTX

0 , hE
0 , ∇E

0 ) and (TH
1 W, gTX

1 , hE
1 , ∇E

1 ). Let DE
X,s be the fiberwise Dirac operator

associated with (TH
s W, gTX

s , ∇E
s ).

If Ind(DE
X,0) = 0 ∈ K∗

G(B), by the homotopy invariance of the equivariant family

index, we have Ind(DE
X,1) = 0 ∈ K∗

G(B). In this case, let A0, A1 be perturbation operators

with respect to DE
X,0, DE

X,1, respectively. Let η̃g,0(π ,A0) and η̃g,1(π ,A1) be corresponding

equivariant eta forms with perturbations. Let P0, P1 be orthogonal projections onto

the eigenspaces of the positive spectrum of DE
X,0 + A0 and DE

X,1 + A1, respectively. Let

sfG{(DE
X,0 +A0, P0), (DE

X,1 +A1, P1)} ∈ K∗
G(B) be the equivariant Dai–Zhang higher spectral

flow defined in [23, Definitions 3.7 and 3.8] (cf. also [17, Definition 1.5]), which we denote

by sfG{DE
X,0 +A0, DE

X,1 +A1} for simplicity. The following proposition was established in

[23], which is a generalization of [17, Theorem 0.1].

Proposition 3.1. [23, Theorem 1.2] For any g ∈ G, modulo exact forms on B, we have

η̃g,1(π ,A1) − η̃g,0(π ,A0) =
∫

Xg

˜̂Ag(TX, ∇TX
0 , ∇TX

1 ) chg(E, ∇E
0 )

+
∫

Xg
Âg(TX, ∇TX

1 ) c̃hg(E, ∇E
0 , ∇E

1 ) + chg

(
sfG{DE

X,0 + A0, DE
X,1 + A1}

)
. (3.1)

Case 1: dim X is odd.

In this case, Theorem 1.4 follows directly from Propositions 2.3 and 3.1.

Theorem 3.2. If dim X is odd, for any g ∈ G, modulo exact forms on B, we have

˜̄ηBC
g,1(π , E) − ˜̄ηBC

g,0(π , E) =
∫

Xg

˜̂Ag(TX, ∇TX
0 , ∇TX

1 ) chg(E, ∇E
0 )

+
∫

Xg
Âg(TX, ∇TX

1 ) c̃hg(E, ∇E
0 , ∇E

1 ) + chg

(
sfG{DE

X,0 + Pker
0 , DE

X,1 + Pker
1 }

)
, (3.2)
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Here, Pker
0 and Pker

1 are the orthogonal projections onto ker DE
X,0 and ker DE

X,1, respec-

tively.

Remark that if there is a smooth path connecting (TH
0 W, gTX

0 , hE
0 , ∇E

0 ) and

(TH
1 W, gTX

1 , hE
1 , ∇E

1 ) such that dim ker DE
X,s is locally constant, we have sfG{DE

X,0 +
Pker

0 , DE
X,1 + Pker

1 } = 0 and [ch(ker DE
X,0)] = [ch(ker DE

X,1)]. This is the case in [21,

Theorem 1.2].

Case 2: dim X is even.

In this case, recall that we assume ker DE
X,i = ker D+,i ⊕ ker D−,i, i = 0, 1, are

Z2-graded vector bundles over B. Remark that if s ∈ (0, 1), dim ker DE
X,s is usually not

locally constant and ker DE
X,0 is not isomorphic to ker DE

X,1 as equivariant vector bundles.

We will use a perturbation trick in [19, 26] to overcome this difficulty.

Consider the equivariant fiber bundle π × Id : W × [0, 1] → B × [0, 1] and the

equivariant Z2-graded Hilbert bundle H± over B × [0, 1] with fiber L2(X(b,s),S±(TX) ⊗
E|X(b,s)

) for (b, s) ∈ B×[0, 1]. Let THW̃|B×{s} := TH
s W⊕R, which is an equivariant horizontal

subbundle with respect to π ×Id. Let (gTX̃ , hẼ , ∇Ẽ) be the geometric data associated with

π × Id induced from (gTX
s , hE

s , ∇E
s ). Let D̃E

X = D̃+ ⊕ D̃− be the corresponding Z2-graded

fiberwise Dirac operator. Then D̃±|B×{0} = D±,0 and D̃±|B×{1} = D±,1.

By [19, Lemma 7.13] (see also [26, p.27]), there exist finite dimensional vector

subbundles L± ⊂ H± and complementary closed subbundles K± ⊂ H± over B × [0, 1],

that is, H± = L± ⊕ K±, such that D̃± ∈ Hom(H±,H∓) is block diagonal as a map

D̃± : L± ⊕ K± → L∓ ⊕ K∓ and D̃± restricts to an isomorphism between K+ and K−.

Remark that the direct sums here may not be orthogonal. It is easy to see that we could

choose L± and K± to be G-equivariant.

Note that ker D̃± ⊂ L±. Add a new Z2-graded vector bundle (L+)− ⊕ (L−)+ over

B × [0, 1] × {pt}. As in Section 2, (L+)− and (L−)+ are vector bundles L+ and L− with the

inverse grading.

As in Section 2, we consider the equivariant fiber bundle π ′×Id : (W�B)×[0, 1] →
B × [0, 1] with fiber X � {pt}. Let D̃L be the fiberwise Dirac operator on HL = H⊕ (L+)− ⊕
(L−)+. Then D̃L = D̃E

X ⊕ 0 ⊕ 0. Let PL : HL → L+ ⊕ L− ⊕ (L+)− ⊕ (L−)+ be the projection. Let

AL =
(

0 1

1 0

)
◦ PL (3.3)

on (L+ ⊕ (L−)+) ⊕ ((L+)− ⊕ L−). From [19, Lemma 7.20], D̃L + AL is invertible. Since

AL anti-commutes with the Z2-grading of HL, it is a perturbation operator associated

with D̃L.
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For i = 0, 1, ker D±,i are equivariant subbundles of L±,i := L±|B×{i}. Let F±,i be the

orthogonal complements of ker D±,i in L±,i. Then L±,i = ker D±,i ⊕ F±,i. Since D±,i : F±,i →
F∓,i, we have F+,i � F−,i as equivariant vector bundles over B × {i}, i = 0, 1. We identify

F+,i and F−,i via the isomorphism D+,i. Let PF
i : HL|B×{i} → ker DE

X,i ⊕ (L+,i)− ⊕ (L−,i)+ be

the orthogonal projection. Let

Aker
F,i =

⎛⎜⎜⎜⎜⎝
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎟⎟⎠ ◦ PF
i (3.4)

on

(
ker D+,i ⊕ (ker D−,i)+

)⊕ ((ker D+,i)− ⊕ ker D−,i

)⊕ (F−,i)+ ⊕ (F+,i)−.

Let DL
i = D̃L|B×{i}, i = 0, 1. Then Aker

F,i are perturbation operators associated with DL
i .

For i = 0, 1, let ∇E
i and ∇ker

i be connections in (2.5) and (2.6) associated with

(TH
i W, gTX

i , hE
i , ∇E

i ). Let ∇L
i and ∇F

i be the projected compatible connections on Li and Fi,

respectively, as in (2.6). Let ∇E ,F
i = ∇E

i ⊕ ∇ker
i ⊕ ∇F

i on HL|B×{i}. Set

B̃
F
u2,i := u(DL

i + χ(u)Aker
F,i ) + ∇E ,F

i − c(Ti)

4u
, (3.5)

where c(Ti) is associated with (TH
i W, gTX

i ). Let η̃H
g,i(π

′,Aker
F,i ) be corresponding eta forms

for g ∈ G.

For two equivariant geometric triples E = (E, hE , ∇E) and F = (F, hF , ∇F), if

E � F as equivariant vector bundles over B, we denote by c̃hg(E, F) the equivariant

Chern–Simons form between E and F for g ∈ G. Moreover, we have

d c̃hg(E, F) = chg(F, ∇F) − chg(E, ∇E). (3.6)

Lemma 3.3. If dim X is even, for g ∈ G, i = 0, 1, we have

η̃H
g,i(π

′,Aker
F,i ) = ˜̄ηBC

g,i (π , E) − c̃hg

(
F−,i, F+,i

)
mod d�∗(B). (3.7)
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Proof. For i = 0, 1, let

Ai =
(

0 1

1 0

)
(3.8)

on
(

ker D+,i ⊕ (ker D−,i)+
)⊕ ((ker D+,i)− ⊕ ker D−,i

)
. Let

AF,i =
(

0 1

1 0

)
(3.9)

on (F−,i)+ ⊕ (F+,i)−. Then Aker
F,i = (Ai ⊕ AF,i) ◦ PF

i . By Proposition 2.5, we have

η̃H
g (π ′,Ai) = ˜̄ηBC

g,i (π , E) mod d�∗(B). (3.10)

From Definition 2.2, (2.12), and (2.19), modulo exact forms on B,

η̃H
g,i(π

′,Aker
F,i ) = η̃H

g (π ′,Ai) −
∫ ∞

0

√−1

2π
Trs

[
g

∂∇F
u2,i

∂u
exp

(
−

(∇F
u2,i

)2

2π
√−1

)]
du, (3.11)

where ∇F
u,i = ∇F

+,i ⊕ ∇F
−,i + √

uχ(
√

u)AF,i on F+,i ⊕ F−,i. We denote by

η̂g(∇F
u2,i) :=

∫ ∞

0

√−1

2π
Trs

[
g

∂∇F
u2,i

∂u
exp

(
−

(∇F
u2,i

)2

2π
√−1

)]
du, (3.12)

which is the equivariant eta form with perturbation when the fiber is a point and

is the analogue of the analytic torsion for a finite dimensional complex [10]. Let

∇̃F
u,i := ∇F

−,i ⊕ ∇F
−,i + √

uAF,i on (F−,i)+ ⊕ F−,i. We deform the metric and the connection

from F+,i ⊕ F−,i to F−,i ⊕ F−,i. Since AF,i is invertible, by [7, Theorem 2.10], modulo exact

forms, we have

η̂g(∇F
u2,i) − η̂g(∇̃F

u2,i) = c̃hg

(
(F−,i)+ ⊕ F−,i, F+,i ⊕ F−,i

)
= c̃hg

(
F−,i, F+,i

)
. (3.13)

From [7, (2.24)], we see that η̂g(∇̃F
u2,i

) = 0. So modulo exact forms, by (3.13), we have

η̂g(∇F
u2,i) = c̃hg

(
F−,i, F+,i

)
. (3.14)

From (3.10)– (3.12) and (3.14), we obtain Lemma 3.1. �
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Since L is an equivariant vector bundle over B × [0, 1], L0 is isomorphic to L1 as

equivariant Z2-graded vector bundles over B.

Theorem 3.4. If dim X is even, for any g ∈ G, modulo exact forms on B, we have

˜̄ηBC
g,1(π , E) − ˜̄ηBC

g,0(π , E) =
∫

Xg

˜̂Ag(TX, ∇TX
0 , ∇TX

1 ) chg(E, ∇E
0 )

+
∫

Xg
Âg(TX, ∇TX

1 ) c̃hg(E, ∇E
0 , ∇E

1 ) + chg

(
sfG{DL

0 + Aker
F,0, DL

1 + Aker
F,1}
)

+ c̃hg(F−,1, F+,1) − c̃hg(F−,0, F+,0) − c̃hg(L0, L1)

+ c̃hg(L1, ∇ker
1 ⊕ ∇F

1 , ∇L
1 ) − c̃hg(L0, ∇ker

0 ⊕ ∇F
0 , ∇L

0 ). (3.15)

Proof. For i = 0, 1, let ∇E ,L
i = ∇E

i ⊕ ∇L
i . Denote by AL

i = AL|B×{i}. Set

B̃
L
u2,i := u(DL

i + χ(u)AL
i ) + ∇E ,L

i − c(Ti)

4u
. (3.16)

Let η̃H
g,i(π

′,AL
i ) be corresponding equivariant eta forms. Since sfG{DL

0 + AL
0, DL

1 + AL
1} = 0,

from Proposition 3.1, modulo exact forms, we have

η̃H
g,1(π ′,AL

1) − η̃H
g,0(π ′,AL

0) =
∫

Xg
Âg(TX, ∇TX

0 , ∇TX
1 ) chg(E, ∇E

0 )

+
∫

Xg

˜̂Ag(TX, ∇TX
1 ) c̃hg(E, ∇E

0 , ∇E
1 ) − c̃hg(L0, L1) (3.17)

and

η̃H
g,i(π

′,AL
i ) − η̃H

g,i(π
′,Aker

F,i ) = −c̃hg(Li, ∇ker
i ⊕ ∇F

i , ∇L
i )

+ chg(sfG{DL
i + Aker

F,i , DL
i + AL

i }). (3.18)

Since

sfG{DL + Aker
F,0, DL + Aker

F,1} = sfG{DL + Aker
F,0, DL + AL

0}
− sfG{DL + Aker

F,1, DL + AL
1}, (3.19)

Theorem 3.4 follows from (3.17), (3.18), and Lemma 3.1.

The proof of Theorem 3.4 is completed. �
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Remark that by [24, Definition 2.14], for any equivariant Chern–Simons form

c̃hg(·), [0, c̃hg(·)] ∈ K̂0
g(B). So, by [24, Proposition 3.1], c̃hg(·) ∈ chg(K1

G(B)). (In [24], it is

easy to see that Proposition 3.1 holds for any compact Lie group G when G acts on B

trivially.) Therefore, we obtain Theorem 1.4.

The following lemma will be used in Sections 4 and 5.

Lemma 3.5. Assume that dim X is even and Ind(DE
X) = 0 ∈ K0

G(B). Let AX be a

perturbation operator associated with DE
X . Then there exists x ∈ K1

G(B), which can be

constructed as an equivariant higher spectral flow explicitly, such that modulo exact

forms, for g ∈ G,

η̃g(π ,AX) = ˜̄ηBC
g (π , E) + chg(x) mod d�∗(B). (3.20)

Proof. Since Ind(DE
X) = 0 ∈ K0

G(B), by [33, Proposition 2.4], there exists n ∈ N, such

that ker D+ ⊕ εn+ � ker D− ⊕ εn−, where εn± are equivariant trivial n-dimensional complex

vector bundles over B with Z2-grading. We identify ker D+ ⊕ εn+ and ker D− ⊕ εn− via this

isomorphism. We consider εn± as vector bundles over B × {pt} with trivial connections.

Let Pε : E ⊕ εn+ ⊕ εn− → ker DE
X ⊕ εn+ ⊕ εn− be the projection. Let

Aker
ε =

(
0 1

1 0

)
◦ Pε (3.21)

on
(
ker D+ ⊕ εn+

)⊕ (ker D− ⊕ εn−
)
. Let

Aε =

⎛⎜⎜⎝
AX 0 0

0 0 1

0 1 0

⎞⎟⎟⎠ ◦ Pε (3.22)

on E⊕εn+⊕εn−. Then Aker
ε and Aε are perturbation operators associated with the fiberwise

Dirac operator DH
X = DE

X ⊕ 0 ⊕ 0 on E ⊕ εn+ ⊕ εn−. Let η̃H
g (π ′,Aker

ε ) and η̃H
g (π ′,Aε) be

corresponding equivariant eta forms with perturbation. By the proof of Proposition 2.5,

we have

η̃H
g (π ′,Aker

ε ) = ˜̄ηBC
g (π , E) mod d�∗(B). (3.23)
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From (3.11) and (3.14), since the connections on εn± are trivial, modulo exact forms, we

have

η̃g(π ,AX) = η̃H
g (π ′,Aε). (3.24)

From Proposition 3.1, modulo exact forms, we have

η̃H
g (π ′,Aε) − η̃H

g (π ′,Aker
ε ) = chg(sf{DH

X + Aker
ε , DH

X + Aε}). (3.25)

So from (3.23)– (3.25), modulo exact forms, we have

η̃g(π ,AX) − chg(sf{DH
X + Aker

ε , DH
X + Aε}) = ˜̄ηBC

g (π , E) mod d�∗(B). (3.26)

The proof of Lemma 3.5 is completed. �

4 Embedding Formula

In this section, we will prove Theorem 1.5. We use the notations and the assumptions in

Section 1.4.

Let ξ = ξ+ ⊕ ξ− be the Z2-graded vector bundle over W. From

[22, Proposition 3.6], if IndDμ
Y = 0 ∈ K∗

G(B), then IndDξ
X = 0 ∈ K∗

G(B). Moreover, we

have the following proposition, which is the equivariant family extension of the main

result in [11].

Proposition 4.1. [22, Theorem 3.7] Assume that IndDμ
Y = 0 ∈ K∗

G(B). Let AY and AX

be perturbation operators associated with Dμ
Y and Dξ

X , respectively. Then there exists a

perturbation operator AAY ,X associated with Dξ
X , depending on AY , such that modulo

exact forms on B, for g ∈ G,

η̃g(πX ,AX) = η̃g(πY ,AY) +
∫

Xg
Âg(TX, ∇TX) γ X

g (FY ,FX)

+
∫

Yg

˜̂Ag(∇TY,N , ∇TX|Wg ) Â
−1
g (N, ∇N) chg(μ, ∇μ)

+ chg(sfG{Dξ
X + AAY ,X , Dξ

X + AX}). (4.1)

Remark that in [22], the author assumed that the embedding is totally geodesic.

In fact, this condition is not necessary because we can use the variation formula
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Proposition 3.1 to obtain the formula for the general embedding from the totally

geodesic case.

Case 1: dim X is odd.

In this case, dim Y is also odd. Let Pker
Y and Pker

X be orthogonal projections onto

ker Dμ
Y and ker Dξ

X , respectively. So, from Proposition 2.3, we have

η̃g(πY , Pker
Y ) = ˜̄ηBC

g (πY , μ) mod d�∗(B),

η̃g(πX , Pker
X ) = ˜̄ηBC

g (πX , ξ) mod d�∗(B).
(4.2)

Theorem 4.2. If dim X is odd, modulo exact forms on B, for g ∈ G,

˜̄ηBC
g (πX , ξ) = ˜̄ηBC

g (πY , μ) +
∫

Xg
Âg(TX, ∇TX) γ X

g (FY ,FX)

+
∫

Yg

˜̂Ag(∇TY,N , ∇TX|Wg ) Â
−1
g (N, ∇N) chg(μ, ∇μ)

+ chg(sfG{Dξ
X + APker

Y ,X , Dξ
X + Pker

X }). (4.3)

Case 2: dim X is even.

In this case, dim Y is even. We denote by Dμ
Y = DY,+ ⊕ DY,−. As in the setting of

Proposition 2.5, we add B × {pt} and consider the embedding W � B → V � B. We denote

by (ker DY,−)+ and (ker DY,+)− the vector bundles ker DY,− and ker DY,+ over B×{pt} with

the inverse grading and assume that restricted on B×{pt}, the embedding is the identity

map. This new embedding also forms an equivariant version of the Atiyah–Hirzebruch

direct image from μ � (ker Dμ
Y)op to ξ � (ker Dμ

Y)op.

Let π ′
W : W �B → B be the fiber bundle induced from πW . Let PY be the projection

onto ker Dμ
Y ⊕ (ker Dμ

Y)op. Set

AY =
(

0 1

1 0

)
◦ PY (4.4)

on
(

ker DY,+⊕(ker DY,−)+
)⊕((ker DY,+)−⊕ker DY,−

)
. Then, from Proposition 2.5, modulo

exact forms on B,

η̃H
g (π ′

W ,AY) = ˜̄ηBC
g (πW , μ). (4.5)

Let π ′
V : V �B → B be the fiber bundle induced from πV . Let η̃BC

g (π ′
V , ξ �(ker Dμ

Y)op)

be the equivariant Bismut–Cheeger eta form associated with this fiber bundle. Since the

equivariant Bismut–Cheeger eta form vanishes when the fiber is a point, as in (2.40), we
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Bismut–Cheeger Eta Form and Higher Spectral Flow 10991

have

η̃BC
g (πV , ξ) = η̃BC

g (π ′
V , ξ � (ker Dμ

Y)op). (4.6)

Let DH,μ and DH,ξ be fiberwise Dirac operators associated with π ′
W and π ′

V . Since

Ind(DH,μ) = 0 ∈ K0
G(B), Ind(DH,ξ ) = 0 ∈ K0

G(B). Let AX be a perturbation operator

associated with DH,ξ . From Lemma 3.5, there exists x ∈ K1
G(B), such that modulo exact

forms,

η̃BC
g (π ′

V , ξ � (ker Dμ
Y)op) = η̃g(π ′

V ,AX) − chg(x). (4.7)

From (1.9), (4.5)– (4.7), and Proposition 4.1, we obtain Theorem 1.5 when dim X is even.

Theorem 4.3. If dim X is even, there exists x ∈ K1
G(B) such that modulo exact forms on

B, for g ∈ G,

˜̄ηBC
g (πV , ξ+) − ˜̄ηBC

g (πV , ξ−) = ˜̄ηBC
g (πW , μ) +

∫
Xg

Âg(TX, ∇TX)γg(Yg, Xg)

+
∫

Yg

˜̂Ag(TY, ∇TY,N , ∇TX|Wg )Â
−1
g (N, ∇N)chg(E, ∇E) + chg(x). (4.8)

5 Functoriality

In this section, we will prove Theorem 1.6. We use the notations and the assumptions in

Section 1.5.

From [23, Lemma 3.6], if IndDE
X = 0 ∈ K∗

G(V), then IndDE
Z = 0 ∈ K∗

G(B). In this

case, the functoriality of the equivariant eta forms with perturbation was obtained

in [23].

Proposition 5.1. [23, Theorem 1.3] Let AZ and AX be perturbation operators associated

with DE
Z and DE

X . Then there exists x ∈ K∗
G(B), an equivariant higher spectral flow, such

that modulo exact forms on B, for g ∈ G,

η̃g(π3,AZ) =
∫

Yg
Âg(TY, ∇TY) η̃g(π1,AX)

+
∫

Zg

˜̂Ag(TZ, ∇TY,TX , ∇TZ) chg(E, ∇E) + chg(x). (5.1)

Case 1: dim X is odd and dim Y is even. Then dim Z is odd.

Since ker DE
X and ker DE

Z form equivariant vector bundles, IndDE
X = IndDE

Z = 0 ∈
K1

G(B). Let Pker DX and Pker DZ be orthogonal projections on ker DE
X and ker DE

Z . Then Pker DX
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and Pker DZ are perturbation operators associated with DE
X and DE

Z , respectively, as in

Section 2. By Proposition 2.3,

η̃g(π1, Pker DX ) = ˜̄ηBC
g (π1, E) mod d�∗(V),

η̃g(π3, Pker DZ ) = ˜̄ηBC
g (π3, E) mod d�∗(B).

(5.2)

From Proposition 5.1 and (5.2), we obtain the functoriality in this case.

Theorem 5.2. If dim X is odd and dim Y is even, there exists x ∈ K0
G(B), such that

modulo exact forms on B, for g ∈ G,

˜̄ηBC
g (π3, E) =

∫
Yg

Âg(TY, ∇TY) ˜̄ηBC
g (π1, E)

+
∫

Zg

˜̂Ag(TZ, ∇TY,TX , ∇TZ) chg(E, ∇E) + chg(x). (5.3)

Case 2: dim X is odd and dim Y is odd. Then dim Z is even.

In this case, IndDE
X = 0 ∈ K1

G(V) and Pker DX is a perturbation operator. From

[23, Lemma 3.6], IndDE
Z = 0 ∈ K0

G(B). Let AZ be a perturbation operator with respect to

DE
Z . Then, by Lemma 3.5, there exists x ∈ K1

G(B), such that modulo exact forms on B, for

g ∈ G,

η̃g(π3,AZ) = ˜̄ηBC
g (π3, E) + chg(x) mod d�∗(B). (5.4)

By Proposition 2.3,

η̃g(π1, Pker DX ) = ˜̄ηBC(π1, E) mod d�∗(V). (5.5)

So from Proposition 5.1, (5.4), and (5.5), we have the following theorem.

Theorem 5.3. If dim X and dim Y are both odd, there exists x ∈ K1
G(B), such that

modulo exact forms on B, for g ∈ G,

˜̄ηBC
g (π3, E) =

∫
Yg

Âg(TY, ∇TY) ˜̄ηBC
g (π1, E)

+
∫

Zg

˜̂Ag(TZ, ∇TY,TX , ∇TZ) chg(E, ∇E) + chg(x). (5.6)

Case 3: dim X is even and dim Y is odd. Then dim Z is odd.

Recall that ker DE
X = ker DX,+ ⊕ker DX,− is a Z2-graded equivariant vector bundle

over V. We consider a new equivariant fiber bundle π ′
1 : W � V → V with fiber X � {pt}

and with vector bundle (ker DX,−)+ ⊕ (ker DX,+)− over V × {pt}.
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Let η̃H
g (π ′

1,A) be the equivariant eta form with perturbation A in (2.41) on(
ker DX,+ ⊕ (ker DX,−)+

)⊕ ((ker DX,+)− ⊕ ker DX,−
)
. By Proposition 2.5, we have

η̃H
g (π ′

1,A) = ˜̄ηBC
g (π1, E) mod d�∗(V). (5.7)

We consider the equivariant fiber bundle π3 � π−
2 : W � V → B such that the

geometric triple over W is E and that over V is (ker DE
X)op. Since ker D

ker DE
X

Y and ker DE
Z

are equivariant vector bundles, from Definition 2.1,

η̃BC
g (π3 � π−

2 , E � (ker DE
X)op) = η̃BC

g (π3, E) − η̃BC
g (π2, ker DE

X). (5.8)

Since dim Z and dim Y are both odd, by Proposition 2.3, there exists a perturbation

operator AP of the fiberwise Dirac operator associated with the fiber bundle π3 � π−
2 ,

such that modulo exact forms, for g ∈ G,

η̃g(π3 � π−
2 ,AP) = η̃BC

g (π3 � π−
2 , E � (ker DE

X)op)

+ 1

2
chg(ker DE

Z ) − 1

2
chg(ker D

ker DE
X

Y ). (5.9)

So from Proposition 5.1 and (5.7)– (5.9), we have the following theorem.

Theorem 5.4. If dim X is even and dim Y is odd, there exists x ∈ K0
G(B), such that

modulo exact forms on B, for g ∈ G,

˜̄ηBC
g (π3, E) = ˜̄ηBC

g (π2, ker DE
X) +

∫
Yg

Âg(TY, ∇TY) ˜̄ηBC
g (π1, E)

+
∫

Zg

˜̂Ag(TZ, ∇TY,TX , ∇TZ) chg(E, ∇E) + chg(x). (5.10)

Case 4: dim X is even and dim Y is even. Then dim Z is even.

We consider the fiber bundles in Case 3. In this case, (5.7) and (5.8) still hold.

Let D̃X be the fiberwise Dirac operator with respect to π ′
1. Then Ind(D̃X) = 0 ∈ K0

G(V). By

[23, Lemma 3.6], IndDE
Z − IndD

ker DE
X

Y = 0 ∈ K0
G(B). By Lemma 3.5, in this case, (9) is

replaced by

η̃g(π3 � π−
2 ,AP) = η̃BC

g (π3 � π−
2 , E � (ker DE

X)op) + chg(x). (5.11)

Here, x is an element of K1
G(B).
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Theorem 5.5. If dim X and dim Y are both even, there exists x ∈ K1
G(B), such that

modulo exact forms on B, for g ∈ G,

˜̄ηBC
g (π3, E) = ˜̄ηBC

g (π2, ker DE
X) +

∫
Yg

Âg(TY, ∇TY) ˜̄ηBC
g (π1, E)

+
∫

Zg

˜̂Ag(TZ, ∇TY,TX , ∇TZ) chg(E, ∇E) + chg(x). (5.12)
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